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Abstract— Current machine learning architectures, strategies, 
and methods are typically static and non-interactive, making 
them incapable of adapting to changing and/or heterogeneous 
data environments, either in real-time, or in near-real-time.  
Typically, in real-time applications, large amounts of disparate 
data must be processed, learned from, and actionable 
intelligence provided in terms of recognition of evolving 
activities. Applications like Rapid Situational Awareness (RSA) 
used for support of critical systems (e.g., Battlefield 
Management and Control) require critical analytical assessment 
and decision support by automatically processing massive and 
increasingly amounts of data to provide recognition of evolving 
events, alerts, and providing actionable intelligence to operators 
and analysts [2 and 4].   
 
Herein we prescribe potential methods and strategies for 
continuously adapting, life-long machine learning within a self-
learning and self-evaluation environment to enhance real-
time/near real-time support for mission critical systems.  We 
describe the notion of continuous adaptation, which requires an 
augmented paradigm for enhancing traditional probabilistic 
machine learning.  Specifically, systems which must more aptly 
operate in harsh/soft unknown environments without the need of 
a priori statistically trained neural networks nor fully developed 
learning rules for situations that have never been thought of yet. 
This leads to a hypothesis requiring new machine learning 
processes, in which abductive learning is applied. We utilize 
varying unsupervised/self-supervised learning techniques, 
statistical/fuzzy models for entities, relationships, and descriptor 
extraction. We also involve topic and group discovery and 
abductive inference algorithms. to expand system aperture in 
order to envision what outlying factors could have also caused 
current observations. Once extended plausible explanations are 
found, we will show how a system uses the afore mentioned 
implements to potentially learn about new or modified causal 
relationships and extend, reinterpret, or create new situational 
driven memories.  
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1 Artificial Neurogenesis (literally the birth of artificial 
neurons) is the processes in which new neurons are generated 
within the artificial memory system. 

1. INTRODUCTION: LIFE-LONG MACHINE 

LEARNING 
A fully autonomous, artificially intelligent system 
has been the holy grail of AI for decades.  However, 
current machine learning methodologies are too static 
and minimally adaptive enough to provide the 
necessary qualitative continuously self-adaptive 
learning required for possible decades of system 
performance. Therefore, we employ biologically 
inspired research and artificial human learning 
mechanisms for enabling AI neural pathways and 
memories to evolve and grow over time [5 & 8]. 
These mechanisms enable a paradigm shift providing 
continuous, or life-long, machine learning algorithm 
and method evolution. Our objective a new 
architecture and requires controls and mechanisms 
like artificial brain functions for enabling complete 
cognitive system management. In short, it requires 
Artificial Neurogenesis 1 , a new machine learning 
architecture and methods enabling a continuously 
self-adapting neural fiber structure within an AI 
system as illustrated in Figure 1. 
 

In this ANP, both explicit and implicit learning are 
required to adequately provide self-assessment 
throughout the AI system.  Self-assessment is 
required for the system to understand how its self-
adaptation is affecting all parts of the AI system [1].  
Explicit learning, as defined here, requires cognitive 
and hierarchical associations, whereas implicit 
learning depends on non-cognitive, non-hierarchical 
associations, and, in general, occurs when a variable 
known to influence explicit learning has no effect in 
a comparable implicit learning condition [1].  Each 



type of learning has effects on the AI system’s overall 
knowledge base and each type of learning may 
influence the other as more information is processed 
and stored within the various memory systems of the 
AI system.  As illustrated in Figure 1, not only is the 
neural structure adaptive, but the learning rules 
themselves must be adaptable, driven by the 
continuous self-assessment functionality within the 
ANP.  Figure 2 provides a high-level view of the 
coordination, interaction and influence Explicit 
Learning, Implicit Learning, and the AI systems 
Knowledge Base have on each other [6]. 
 

 
Figure 1 – The Artificial Neurogenesis Process (ANP) 

 

 
Figure 2 – The Implicit, Explicit, Knowledgebase Influence 

Triangle 

A continuously adaptable, life-long machine learning 
architecture, from our studies, requires many types of 
learning to facilitate understanding how the entire 
system must adapt as it learns, reasons, as the 
environments the system is in change, and as the 
system ages.  To provide continual real-time decision 
support over time, we feel the following memory 
systems must be in place, and each be self-adaptive: 
 

1. Perceptual Associative Memory: the ability to 
interpret incoming stimuli by recognizing objects 
and by categorizing them. 

2. Procedural Memory: memory for the 
performance of specific types of action. 
Procedural memory guides the processes the AI 
system performs and most frequently resides 
below the level of conscious awareness. 

3. Declarative Memory: this is classical long-term 
memory and refers to memories that can be 
consciously recalled such as facts and knowledge 
(from the AI systems knowledge base). 

4. Transient Episodic Memory: the memory of 
autobiographical events (times, places, 
associated emotions, and other contextual who, 
what, when, where, why knowledge) that can be 
explicitly stated or conjured. It is the collection of 
past system experiences that occurred at a 
particular time and place. Episodic memory 
stores unique events (or observations). 

5. Blackboard Memory: a common knowledge 
base that is iteratively updated by the diverse set 
of components, software agents, etc. throughout 
the system.  Blackboard memories typically start 
with a problem specification and end with a 
proposed solution.   

6. Sensory Memory: this is the shortest-term type 
of memory.  Sensory memory can retain 
impressions of the sensory information coming in 
through the various types of sensors the AI 
system has.  These impressions are sent to the 
perceptual associative memory.  These would be 
rudimentary at first, but then expand as the 
system learns. 

 

Each type of memory is updated by life-long 
machine learning algorithms specifically created for 
that type of memory.  In self-adaptive, continuous 
machine learning, there is no one learning algorithm 
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or system that will suffice.  Figure 3 illustrates the 
high-level architecture for a self-adaptive, 
continuous life-long learning structure for an AI 
system. 
 
We employ Abductive Learning for finding the best 
explanation for a given set of observations or 
inferring cause from effect [10 and 11]. This 
accommodates adjustment of learning types for self-
adaptation to environments, data, and experiences 
the system has not previously encountered. We 
define a simplified version of abductive learning, 
Occam Learning [9], which relates to finding the 
simplest explanation(s) when inferring cause from 
effect(s). 
 

 
Figure 3.  Life-long Machine Learning Process 

 
The life-long learning architecture shown in Figure 
3 is primarily used to describe support for procedural 
and perception learning. Our research shows that 
there are at least four types of learning required so a 
fully autonomous AI system can potentially learn, 
and reason.  They are: 
 
1. Episodic Learning: the process of storing/ 

retrieving experiences in the episodic memory 
and using it to improve behavior (responses to 
stimulus).   

2. Attention Learning: also called concentration, 
attention learning stores triggers that allows the 

                                                           
2 If HD contains free variables, ( HD) should be consistent 

w.r.t. BD. 

AI system to focus its efforts on objects or events 
of interest.   

3. Perceptual Learning: the process of learning 
skills of perception.  This allows continuous 
improvement in sensory processing (how to 
distinguish objects from sensory information – 
an example would be ATR), to complex 
categorizations of spatial and temporal patterns.  
Perceptual learning forms the foundation for an 
AI system to create complex cognitive processes 
(e.g., language).  Perceptual learning drives 
adaptations (changes) in the AI systems neural 
circuitry or patterns. 

4. Procedural Learning: learning by acquiring 
skill at performing a task.  Procedural learning 
allows the AI system to perform a task 
“automatically” without consuming resources to 
determine how to accomplish the task [12]. 

 

2. ARTIFICIAL INTELLIGENCE MACHINE 

LEARNING WITH OCCAM ABDUCTION 
Occam Abduction is used to find the simplest set of 
consistent assumptions and hypotheses, which, 
together with available background knowledge, 
entails adequate description/explanation for a given 
set of observations [2]. 

 
In formal logic notation, given BD, representing 
current background knowledge of domain D, and a 
set of observations OD, on the problem domain D, 
we look for a set of Occam Hypotheses, HD, such 
that: 

- HD is consistent2 w.r.t. BD, and 
- It holds that BD, |= HD, OD 

 

Abduction consists of computing explanations 
(hypotheses) from observations.  It is a form of non-
monotonic reasoning and provides explanations that 
are consistent with a current state of knowledge and 
may become less consistent or inconsistent, when 
new information is gathered.  The existence of 
multiple hypotheses (or explanations) is a general 
characteristic of abductive reasoning, and the 
selection of the preferred, or most simple, but 
possible, explanation is an important precept in 
Artificial Occam Abduction. 



Abduction was originally embraced in Artificial 
Intelligence work as a non-monotonic reasoning 
paradigm to overcome inherent limitations in 
deductive reasoning.  It is useful in Artificial 
Intelligence applications for natural language 
understanding, default reasoning, knowledge 
assimilation, belief revision, and very useful in 
multi-agent systems [8].  The Abduction form of 
inference, using hypotheses to explain observed 
phenomena, is a useful and flexible methodology of 
reasoning on incomplete or uncertain knowledge. 
Occam Abduction, defined herein, provides not only 
an answer, or cause, to the observations, it provides 
class properties of possible hypotheses within which 
observations are determined valid, and denotes the 
simplest set of hypotheses under which this is true. 
 
2.1 Elementary Occam Abduction 
There are several distinct types of interactions that 
are possible between two elementary Occam 
Abductive hypotheses h1, h2 He: [4] 
 Associativity: The inclusion of h1He 
suggests the inclusion of h2.  Such an interaction may 
arise if there is knowledge of, for instance, mutual 
information (in a Renyi sense) between h1 and h2. 
 Additivity: h1 and h2 collaborate additively 
where their abductive and explanatory capabilities 
overlap.  This may happen if h1 and h2 each partially 
explain dome datum dD0 but collectively can 
explain more, if not all of D0. 
 Incompatibility: h1 and h2 are mutually 
incompatible, in that if one of them is included in He 
then the other one should not be included. 
 Cancellation: h1 and h2 cancel the abductive 
explanatory capabilities of each other in relation to 
some dD0. For example, h1 implies an increase in a 
value, while h2 implies a decrease in a value.  In this 
case, one is used to support the hypothesis and the 
other is used to rebut the hypothesis.   

 
The Occam Abductive Process is: 
 Nonlinear in the presence of incompatibility 
relations 
 Non-monotonic in the presence of 
cancellation relations 

 The general case (nonlinear and non-
monotonic) Occam Abduction hypothesis 
investigation is NP-complete. 

 
Consider a special version of the general problem of 
synthesizing an Artificial Occam abductive 
composite hypothesis that is linear, and, therefore, 
monotonic. The synthesis is linear if: 
 

 
 
The synthesis is monotonic if: 

 
 

 
In this special version, we assume that the Occam 
hypotheses are non-interacting, i.e., each offers a 
mutually compatible explanation where their 
coverage provides mutual information (in a Renyi 
sense).  We also assume that the Occam, abductive 
belief values found by the classification subtasks of 
abduction for all hHe are equal to 1 (i.e., true). 

 
Under these conditions, the synthesis subtask of 
Artificial Occam Abduction can be represented by a 
bipartite graph, consisting of nodes in the set D0He.  
This says there are not edges between the nodes in 
D0, nor are there edges between the nodes in He.  The 
edges between the nodes in D0 and those nodes in He 
can be represented by a matrix Q where the rows 
correspond to dD0 and the columns correspond to 
htHe. 

 
The entries in Q are denoted as Qij and indicate 
whether the given analyzed data are explained by a 
specific abductive Occam hypothesis.  The entries 
are defined as: 
 
 
 
 

Given the matrix Q for the bipartite graph, the 
abductive, Occam synthesis subtask can be modeled 
as a set-covering problem, i.e., finding the minimum 
number of columns that cover all the rows.  This 
ensures that the composite abductive, Occam 
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hypothesis will explain all of D0 and therefore be 
parsimonious3. 

 

Now we look at a special linear and monotonic 
version of the general abductive, Occam hypothesis 
synthesis subtask and look at a Possibilistic 
Abductive Neural Networks (PANNs) for solving it 
[1].  The first is based on an adapted Hopfield model 
of computation: 
 

 
 
 

For the Occam, abductive synthesis subtask, we 
associate variable Vj with each Occam hypothesis 
htHe, to indicate if the Occam hypothesis is 
included in the composite Occam, abductive 
hypothesis C.  We then minimize the cardinality of 
C by: 
 

 
 
subject to the constraint that all data dD0 are 
completely explained. 
 
For the Occam, abductive network, the term in the 
energy function that represents the problem 
constraints must evaluate to zero when the constraint 
is satisfied and must evaluate to a large positive value 
when the constraint is not satisfied, forcing the 
evolving solution lattice to evolve accordingly [5].  
For this energy term, we use a term expressed as a 
sum of expressions, one for each datum element, di, 
such that the expression evaluates to zero, when 
hypothesis hj that can explain the datum di is in the 
composite hypothesis, i.e., Vj = 1.  Given that Q is an 
incidence matrix (with elements either 0 or 1), the 
expression: 
 
 
 
satisfies the following conditions: 
 
 Each sum of the product terms can never evaluate 

to a negative number. 

                                                           
3 Note that the general set-covering problem is NP-complete. 

 The sum of the product terms, thus, can never 
evaluate to a negative number. 

 Each product term evaluates to zero when a 
hypothesis that can explain the datum is in the 
composite; otherwise, it evaluates to a large 
value. 

 The sum of the product term, thus, evaluates to 
zero when a composite set of hypotheses can 
explain all the data. 

 
We derive our Occam abductive energy function as 
follows: 
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Where  and  are positive constants, and  > .  The 
first term represents the cardinality of the Occam 
hypothesis and the second term represents the penalty 
for a lack of complete coverage; 0 indicates complete 
coverage. 
 
3. ELEMENTARY CONTINUOUS ABDUCTION 
Continuous machine learning requires continuous 
abduction, which drives us to constantly look for 
ways to explain either the external environment, or 
things within the AI system (self-reflection).  This 
requires an architecture and process for continuous 
abduction.  Figure 4 illustrates this process. 
 
Here, the assumptions are: 

 The Occam causes are mutually exclusive and 
constitute exhaustive coverage of the effects. 

 Each of the Occam causes is conditionally 
independent. 

 Each of the Occam causes are not mutually 
incompatible. 

 None of the Occam causes cancel the 
abductive explanatory capability of any other 
Occam cause. 
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Figure 4 – Elementary Continuous Abduction 

 
From Figure 4, we see that when observations are 
present for which there are no explanations, the 
Occam abduction system creates a set of hypotheses 
(possible explanations).  Each of these hypotheses are 
tested to create a plausible set of explanations.  The 
system expands to generalized hypotheses if needed.   
Figure 5 illustrates a high-level architecture for a 
generalized life-long machine learning abduction 
model.  This architecture generalizes the observations 
into categories.  If no concepts exist to explain the 
observations, new concepts must be created to 
accommodate the observations.   
 

 
Figure 5 – Generalized Life-long Machine Learning 

Abduction 

Hypotheses are generated by looking at similarities 
and differences between the observations and 
categories.  Conflict between hypotheses must be 
adjudicated.  Eventually, a set of non-interfering, 
non-overlapping hypotheses that explain the 
observations is created, learned from, and decisions 
made.  Attributes of these hypotheses are categorized 
and learned, including any memory triggers that are 
needed. 
 
4. CONCLUSIONS AND DISCUSSION 
This is very preliminary work and much more 
research is required.  Here we have presented a high-
level view and discussion of the possibility of an AI 
system with continuously adapting, life-long machine 
learning.  The architectures, structures, methods, and 
algorithms require a complete change from current 
thinking and development.  We believe this is the 
future of autonomous and semi-autonomous AI 
systems.  Research must be continued on the Occam 
Learning algorithms to determine what constitutes an 
acceptable Occam Abduction Energy level and to 
understand how to apply the weighting factors  and 
 in the Occam Energy Equation (i.e., is it domain 
specific?). 
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