

Bi-Objective Study for the Assignment of

Unmanned Aerial Vehicles to Targets
Ryan D. Friese*, James A. Crowder§, Howard Jay Siegel⸶ɠ, and John N. Carbone¥£

 *Pacific NW Nat. Lab §Colorado Engineering, Inc. ⸶Elect. & Computer Engineering Dept. ¥Elect. & Computer Engineering Dept.

 Richland, WA, 99354 Colorado Springs, CO 80920 ɠComputer Science Dept.
£
Computer Science Dept.

 U.S. Dept. of Energy USA Colorado State, University Southern Methodist University
Washington DC, 20585, USA Ft. Collins, CO 80523, USA Dallas, TX 75205, USA

Email: Ryan.Friese@pnnl.gov, jim.crowder@coloradoengineering.com, HJ@colostate.edu, John.Carbone@forcepoint.com

Abstract— Historically, research shows that multi-vehicle, multi-
constraint, surveillance problems require a combinatorial optimization
solution. In many of these surveillance missions, the overall objective
is to provide plans for surveillance tasks for UAVs (unmanned aerial
vehicles) visiting, or “surveilling,” targets across geographically
distributed areas. Surveillance plans are created with the goal of
maximizing the number of targets the fleet of UAVs can surveil in a
given period of time (in this paper, 24 hours) under a given set of
constraints related to total energy usage (the energy available to each
UAV).. Here, we present a bi-objective task planning genetic algorithm
(GA) that provides a Pareto set of near optimal surveillance plans, given
the above conflicting energy and surveillance objectives. Future work
will expand these algorithms to support multi-objective mission
planning, including speed, distance, weather conditions, and other
factors that would affect the overall surveillance opportunities.

Keywords—bi-objective optimization, genetic algorithms, Pareto
fronts, surveillance, UAVs

1. INTRODUCTION
Surveillance planning for multi-vehicle, multi-target, ad-hoc
tasking represents a real-world situation for active battlefield
scenarios [1]. Figure 1 below illustrates an example scenario.
In this scenario, we have seven UAVs, flying in two patterns
forming concentric circles around the geographic area to be
surveilled. Within the geographic area to be surveilled, we have
identified targets to be surveilled by the UAVs. Each UAV may
have different sensors on board and each target may have
different priorities and need to be surveilled by a given sensor
type (e.g., IR, SAR).

Figure 1: Example of multi-vehicle, multi-target surveillance

problem
UAV/drone planning in these cases can often be an
oversubscribed, heterogeneous scheduling problem, because

UAV surveillance tasks arrive dynamically, and the UAV
planner must map tasks to UAVs for mission execution. The
number of surveillance planning requests at any moment in time
may exceed the available number of UAVs, making the planning
problem oversubscribed. It is possible that each UAV may have
different capabilities and different physical constraints and
characteristics, making the real-time, mission planning problem
an oversubscribed, heterogeneous planning problem [2].

Examples of past UAV research include cooperative task
assignment and path planning of multiple UAVs [3], three-
dimensional offline path planning using a multi-objective
evolutionary algorithm [4], and offline/online path planning for
UAV navigation [5]. However, here we describe a bi-objective
genetic algorithm for a surveillance value performance measure
and resource allocation constraints required to manage and
successfully plan a set of regularly scheduled surveillance
requests. In addition, if conditions change, as situational
awareness information is obtained, the surveillance schedule
could be re-computed [6]. Each mission task has a weight
(importance) that will be utilized to measure success/failure of
the planning algorithms. The results will illustrate the benefits
of the algorithms and constraints for making allocation decisions
in an oversubscribed, real-time planning environment [7].

Such multi-vehicle, multi-constraint, surveillance planning
problems are combinatorial optimization problems in which the
overall objective is to schedule a set of optimized surveillance
planning requests that provides a plan for UAVs visiting, or
“surveilling” over geographically distributed targets within a
given area. Surveillance plans are created with the goal of maximizing
the number of targets the fleet of UAVs can surveil in a given period of
time (in this paper, 24 hours) under a given set of constraints related to

total energy usage (the energy available to each UAV) [8]. Here, we
present a bi-objective task planning genetic algorithm (GA) that
provides a Pareto set of near optimal surveillance plans, given
the above conflicting energy and surveillance objectives. The
contributions of this paper include:

1. Defining a surveillance value performance measure that

includes the targets surveilled, the number of times each
target is surveilled, and the priority of each target;

2. Design of a model for surveilling heterogeneous targets by
heterogeneous UAVs;

3. Implementation of a genetic algorithm for a bi-objective
study of energy versus surveillance performance for a set of
realistic system parameters;

4. The construction of a Pareto front of near optimal mappings
of targets to UAVs to use to study tradeoffs between those
two objectives.

The paper is organized as follows. First, a description of the bi-
objective optimization problem is presented with tables
describing the UAV and target characteristics in Section 2.
Section 3 provides a detailed description of the genetic
algorithm that was used for the bi-objective surveillance plan
optimization through the generation of the Pareto fronts. In
Section 4, we present the results illustrating the creation of a
surveillance plan for the UAVs to surveil the targets, using the
bi-objective function with total energy usage and weighted
number of surveilled targets as the objectives. Section 5
discusses related work. We conclude in Section 6 and present
some ideas for future work.

2. PROBLEM DESCRIPTION

For purposes of this paper, we are limiting our optimization to
two parameters: total energy usage and total number of surveils
of the targets, weighted by the target’s priority. The tables
below show the parameters we consider in this paper.

Table 1 illustrates the constraints associated with UAV fleet.
For our example mission planning/scheduling problem, we
assume seven UAVs. Table 1 shows the total energy
(normalized to a maximum of 1 for the UAV with the most
energy) available to a given UAV for surveillance of tasks over
a 24-hour period. It is assumed that there is enough reserve
energy allotted to each UAV to return to a “home” for
refueling/recharging once the nominal energy is at 0. Also
shown is the energy cost/hour for operating each UAV, along
with the sensor types available for each UAV.

Table 1: UAV Characteristics

Table 2 describes the characteristics of the targets to be
surveilled by the UAVs. For our example problem for this
paper, there are nine targets shown. Each target has a given
surveillance priority, the surveillance time required for each
surveil of that target, the sensor types that may be used for each
target surveillance, and the maximum number of surveils per
day desired for each target.

Table 2: Target Characteristics

Figure 2 illustrates this distance normalization. For the UAV
sensors, each sensor type is:

 VIS: visible light spectrum sensor
 IR: infrared spectrum sensor
 UV: ultraviolet spectrum sensor
 SAR: surface acoustical radar sensor

As shown in Figure 2, a circle is drawn, encompassing the target
area, designated with radius 1. The UAVs stay in concentric
circle flight paths around the target area waiting for tasks
(surveillance missions). The two flight paths are normalized and
are determined, based on the normalization of the given
geographic area to a radius of 1, such that any given UAV can
surveil any given target from within its concentric flight path.

Figure 2: Surveillance example with normalized distances

The overall performance measures for the planning algorithms
are:

1. Minimize the overall normalized absolute energy, summed
over all the UAVs (see Table 1)

2. Maximize weighted total number of targets surveilled
based on priority, i.e., for each time (up to the allowed
maximum) a target complete is surveilled for the required
amount of time (see Table 2) the system performance is
incremented by that targets priority.

Any operations still occurring when a period ends will get a
proportional credit, based on the completed time for that surveil
(see Table 2). Table 2 describes the time a UAV must spend on
the target to have a complete surveillance. The planning
algorithm can repeat a given target with the same or different
UAV up the number of times to be surveilled (see Table 2).
Surveils to the same target can be continuous in time or spaced
out temporally. For this study, we do not consider the distance
between target and UAV, so each UAV can surveil any target
from wherever the UAV is within its flight plan (concentric
circles around the geographic area.

UAV characteristic UAV #1 UAV #2 UAV #3 UAV #4 UAV #5 UAV #6 UAV #7

total energy (0-1) 1 0.8 0.9 0.7 0.8 0.6 1

energy cost/hour (0-1) 0.08 0.08 0.08 0.1 0.125 0.07 0.15

sensor type VIS & IR VIS SAR UV & IR SAR & IR VIS & IR SAR & UV

target characteristics target #1 target #2 target #3 target #4 target #5 target #6 target #7 target #8 target #9

proritiy 1 2 6 7 5 4 3 3 1

surveillance time - hrs 3 4 1 3 2 1 3 3 4

surveillance type SAR/IR/VIS SAR/UV VIS/SAR Any VIS IR/UV SAR/VIS SAR/IR/VIS VIS

surveil fequency #/day 4 3 5 2 4 5 3 3 4

3. MISSION PLANNING ALGORITHMS

3.1 Genetic Algorithms

Genetic algorithms (GAs) are common evolutionary
optimization techniques useful in solving problems that contain
large and complex search spaces [9, 10, 11, 12, 13]. GAs try to
emulate the process of natural selection; i.e., producing better
(fitter) solutions as time progresses. A typical GA maintains a
population of individuals called chromosomes. Each
chromosome is a solution to the problem being solved.
Chromosomes are compared with one another by evaluating
their fitness. Fitness functions are often, but not always, the
objective function to optimized. Chromosomes are further
composed of genes, the base component of a solution, and their
representation is highly dependent on the problem being solved.
Our paper implements a popular multi-objective GA, the
NSGA-II [14] (described below).

Better solutions in a GA are produced as the population evolves
through time. Evolution occurs using three genetic operators:
selection, crossover, and mutation. During selection,
chromosomes are chosen as parents to “mate” and produce
offspring chromosomes. Typically, selection operators are
biased towards selecting more fit chromosomes. The crossover
operation takes the chromosomes chosen during selections and
swaps a portion of the genes of each parent into one another,
resulting in offspring chromosomes that contain genetic
information from both parents. Finally, mutation operates on
chromosomes individually, with individual genes in a
chromosome being randomly mutated to introduce new genetic
information. Selection, crossover, and mutation are applied to
the population until some stopping criteria is met, e.g., the
population converges, or a given number of iterations have been
performed.

3.2 NSGA-II
The NSGA-II is a popular bi-objective genetic algorithm
developed in 2002 and is used for a variety of optimization
problems [14]. The basic algorithm flow is illustrated in Figure
3 [14]. The NSGA-II utilizes solution dominance to produce
Pareto fronts, i.e., the set of solutions that are not dominated by
other solutions. Figure 4 illustrates the principle of solution
dominance. In the figure, A dominates D because A is better in
both objectives, any solution below and to the right of A would
be dominated by A, while any solution above and to the left of
A would dominate it. None of A, B, or C dominate each other
because each one out performs the others in at least one
objective, e.g., B consumes less energy than A and C, but A has
a higher value than B and consumes less energy than C.

3.3 Chromosome Structure
For our use, as described in Section 2, we are trying to solve
surveillance of multiple targets using multiple UAVs, which we
formulate as a resource allocation (task scheduling) problem.
Specifically, we equate the targets to tasks that need to be
executed with the UAVs as the resources [7]. Thus, a solution
consists of the allocation of UAVs to surveillance targets.

Figure 3: The NSGA-II algorithm flow

Figure 4: Example of dominance for four solutions: A, B, C,
and D. Solution A dominates D because A has lower energy
consumption as well and a higher surveillance value. None

of A, B, or C dominate each other because they all
outperform one another in one objective, but not both.

Given the assumptions and constraints of the problem, we have
defined that each target has a maximum number of surveils for
which value can be earned. Thus, at its most basic
representation an individual gene within a chromosome
represents a possible surveil for each target. To fully encode a
solution, each gene contains two floating-point numbers in the
range from 0 to 1, representing:

1. A global scheduling order where the lower the number, the

earlier the associated target will be surveilled.

genetic operator

start

initialize population

evaluate individual
population fitness

select ranked
population individuals

select parents

crossover/mutation

evaluate offspring
against objectives

offspring
population
size met?

no

rank parents and
offspring

stopping criteria
met?

ye
s

no

output yes

2. The UAV that will be used to perform the surveillance.

Figure 5 illustrates a sample chromosome, with the entries
ranging from 0 to 1.

Figure 5: Chromosome structure

Floating point numbers are utilized because they allow for
every chromosome to completely encode a valid solution
without requiring expensive “fix” operations during the
crossover or mutation operations. In practice, this applies to
each data field for different reasons. For target surveillance
ordering, it is highly unlikely that any two genes will contain
precisely the same floating-point value, thus we can always find
an exact ordering amongst the genes. In the UAV
representation, utilizing floating-point numbers allows us to
shift the actual calculation of the UAV from the crossover and
mutation operations into the fitness evaluation of each
chromosome, allowing the crossover and mutation functions to
be very fast.

Furthermore, representing these values as double-precision
means it will be highly unlikely that we will have two identical
chromosomes within a given solution space, allowing us to
maintain more genetic diversity within the populations.
Finally, storing the values as double-precision numbers allows
us to use more exotic mutation and crossover operations, which
will be useful in later work as we expand the problem space and
increase the number of objectives.

3.4 Chromosome Fitness Evaluation

Given the structure of our chromosomes, we have implemented
an efficient evaluation function to construct the actual resource
allocation and then to calculate fitness in terms of value earned
and energy consumed. Evaluation of a chromosome required
adherence to several constraints:

1. Each target has a maximum number of useful surveils
(inherently handled by the structure of the chromosome
itself).

2. The constraint that only one UAV can surveil a target at a
time is handled by the order value within a gene and by a
vector (of size number of target types) that contains the
available time for each target (Algorithm 1, line 3).

3. A vector of UAV available times (Algorithm 1, line 1)
represents when a new surveil can occur and prevents
individual UAVs from surveilling multiple targets
simultaneously.

4. UAVs are constrained by the amount of energy they
contain; thus, we create a vector that maintains the current
amount of energy consumed for each UAV (Algorithm 1,
line 2).

The fitness evaluation algorithm is shown in Figure 6. The first
step of the algorithm is to sort the genes, based on their order
values, and then iterate over the genes in descending order
(Algorithm 1, line 5). Both the target and UAV are extracted
from the gene (Algorithm 1, lines 6,7). The target is determined
based on the location of the gene in the chromosome. To
calculate the specific UAV for a gene, we divide 1 by the
number of possible UAVs (based on sensor constraints in Table
1). This creates equally sized buckets from 0 to 1 that map to
the possible UAV’s for each target. The UAV for a gene is then
based on which bucket the floating-point UAV value falls into.
We then set the start time for this surveil as the maximum of
the available time for the target and available time for the UAV
(Algorithm 1, line8). Next, we calculate a tentative surveil
time, which is the minimum of target.surveil_time and 24 hours
– start time. This will ensure we only receive credit for the
surveil up to 24 hours, the length of our analysis (this problem
is set up for daily surveillance schedules) (Algorithm 1, line 9).
We then calculate the energy consumed for this surveil as:

 min(surveil_time*uav.rate_of_consumption,
 uav.max_energy− uav.consumed_energy)

Given this energy value, we calculate what percentage of the
surveil completed and multiply that by the previously
calculated tentative surveil time (Algorithm 1, lines 12-14).
This provides the final surveil time for this gene and ensures we
only receive credit when there is time remaining and a UAV
has energy available. Finally, we update the available time
values for the UAV and the target, and the consumed energy for
the UAV (Algorithm 1, lines 15-17). The global energy is
calculated after all the genes have been iterated over (Algorithm
1, line 19).

4. RESULTS
For our experiments, the NSGA-II was configured in the
following manner. The population size was 100 chromosomes,
the initial population is completely random, the probability of
crossover is 75%, and the probability of mutation is 1%. Fitness
evaluations were performed in parallel. We let the algorithm
run for 1 minute before termination. All tests were run on a
single node consisting of two 2.8 Ghz Intel Xeon E5-2680 V2
processors with 128 GB of RAM, where each processor has 20
threads.

Figure 7, below, shows the results of our experiment. The larger
plot in the lower right side of the figure presents the Pareto front
between our two objectives, total energy consumed and surveil
value. This curve shows the trade-off that exists between the
two. That is, as the UAVs consume more energy, they also earn
more value. From the front, we see there is an inflection point
around 2.5 units of energy, where before this point, we see large
increases in value per unit of energy spent, after this point the
value earned per unit of energy diminishes with increasing
energy. This analysis can be used to inform decision makers on
the correct policies for their environments.

Figure 6: Pseudo code for energy calculation

Ideally, Pareto fronts should have solutions as evenly
distributed as possible along the entire length of the front. We
see that below the inflection point, there are less solutions than
above. While we plan to explore this more in future work, we
suspect part of the reason this occurs is due to a non-uniform
distribution of solutions in the search space [15]. That is, for the
smaller energy solutions, there are fewer unique representations
of non-dominated solutions than for higher energy solutions.
This means that even though two chromosomes may have
completely different representations in the solution space, their
fitness evaluates to the same values in the objective space.

The smaller plots that surround the Pareto front illustrate the
actual UAV-to-target allocations for five solutions along the
front. Unsurprisingly, the lower energy solutions use fewer
UAVs and surveil less targets, resulting in less value earned. As
we move along the front to higher energy consuming solutions,
both the number of UAVs used and the targets surveilled
increase, resulting in more value earned. From these plots, we
can extract some interesting observations. For example, one can
quickly see which targets are more profitable to surveil; given
our environment, we see that target 9 is never surveilled
indicating the value-to-energy spent ratio is too high given the
energy and time constraints. We also see that targets 3 and 6 are
the most profitable to surveil. In future work, we can use these
observations to intelligently seed our GA with initial solutions
to aid in the search process [16]. Furthermore, decision makers
could use observations like these and potentially adjust the
priority value of a given target or procure additional UAVs to
maximize the efficiency of their overall missions.

5. RELATED WORK

Many interesting problems consider multiple objectives, but
multi-objective optimization is challenging because there
typically does not exist a single superior solution for all
objectives. Instead, there is a set of superior solutions that are
non-dominated and form the Pareto Front [17]. Calculating
Pareto fronts can be computationally expensive due to solving
numerous variations of the optimization problem. Scalarization
techniques are often used to convert multi-objective problems
in to a set of scalar optimization problems. Common
scalarization approaches include the hybrid and elastic
constraint methods [18], Benson’s Algorithm [19, 20], and
Pascoletti-Serafini scalarization [21]. Approaches such as
weighted sums, ε-constraint, and normal boundary intersection
are generalized by Pascoletti-Serafini scalarzation.

In addition to scalarization methods, there exist numerous
evolutionary approaches for finding Pareto Fronts. This
includes multi-objective ant colony optimization [22], multi-
objective GA (MOGA) [23], strength Pareto evolutionary
algorithm (SPEA2) [24], and the Pareto archived evolution
strategy (PAES) [25]. One benefit of evolutionary algorithms
over traditional scalarization methods is that they directly
provide the set of solutions the make up the Pareto front, instead
of optimizing for a single solution at a time. In this work, we
use the NSGA-II [14, 15] as our multi-objective algorithm (due
to our prior experience and success in using it for multi-
objective resource allocation problems [26, 27, 28], but it would
be feasible to use any of the above approaches to achieve the
same analysis.

6. CONCLUSIONS AND DISCUSSION
Here we described algorithms, performance measures, and
resource allocations required to manage and successfully plan a
set of regularly scheduled surveillance requests. The results
illustrated the benefits of the algorithms for making allocation
decisions in a heterogeneous, oversubscribed, real-time planning
environment.

This paper is initial research needed to form a basis for future
dynamic environment work, where conditions change, as
situational awareness information is obtained, the surveillance
schedule could be re-computed [28]. Each mission task will have
a time-varying weight (importance) that will be utilized to
measure success/failure of the planning algorithms [3].

The preliminary results are encouraging and can form a basis for
more research and analysis. For future papers, we intent to open
the problem to more constraints to include distance from target
and weather conditions that affect the value of a given surveil.

Algorithm 1 Fitness Evaluation

Input: chromosome C , numUavs , numTargets

Output: value, total_energy

1: uav_times [numUavs] = 0

2: uav_energy [numUavs] = 0

3: target_times [numTargets] = 0

4: value = 0

5. for gene  sorted (C.genes) do
6: u = gene.uav

7: t = target_uav

8. start_t = max(target_times [t],uav_times [u])

9: survey_t = min(t.survey_time , 24-start_time)

10: exp_energy = min(u.energy_rate *survey_t)

11: energy = min(exp_energy , u.max.energy - uav.energy [u])

12: survey_t = survey_t *(energy /exp_energy)

13: percent_t = (survey_t /t.survey_time)

14: value+ = u.value *t.priority *percent_t

15: target_times [t] = start_t +survey_t

16: uav_times [u] = start_t +survey_t

17: uav_energy [u]+ = energy

18: end for
19: total_energy = S(uav_energy)

References
1. J. Crowder and J. Carbone J, “Autonomous mission

planner and supervisor (AMPS) for UAVs,” 20th
International Conference on Artificial Intelligence, July
2018.

2. S. Ali, H. Siegel, M. Maheswaran, D. Hensgen, and S. Ali,
“Representing task and machine heterogeneities for
heterogeneous computing systems,” Tamkang Journal of
Science and Engineering, Special Issue, Invited, vol. 3, no.
4, pp. 19-207, Nov. 2000.

3. E. Yeonju and H. Bang, “Cooperative task assignment/path
planning of multiple unmanned aerial vehicles using a
genetic algorithm,” Journal of Aircraft, vol. 46, no. 1, pp.
338-343, Jan. 2009.

4. S. Mittal and K. Deb, “Three-dimensional offline path
planning for UAVs using multi-objective evolutionary
algorithms,” 2007 IEEE Congress on Evolutionary
Computation, pp. 3195-3202. doi: 10.1109/
CEC.2007.4424880, Sep. 2007.

5. I. Nikolos, K. Valavanis, N. Tsourveloudis, and A.
Kostaras, “Evolutionary algorithm based offline/online
path planner for UAV navigation,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol.
33, no. 6, pp. 898-912, doi: 10.1109/
TSMCB.2002.804370, Dec. 2003.

6. G. li, G. Zhou, J. Yin, and Y. Xiao, “A UAV scheduling
and planning method for post-disaster survey,”
International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, vol. XL-2, pp.
169-172, Nov. 2014.

7. C. Tunc, D. Machovec, N. Kumbhare, A. Akoglu, S.
Hariri, B. Khemka, and H. J. Siegel, “Value of service-
based resource management for large-scale computing
systems,” Cluster Computing, vol. 20, issue 3, pp. 2013-
2030, Mar. 2017.

8. J. Crowder and J. Carbone, “An agent-based design for
distributed artificial intelligence,” International
Conference on Artificial Intelligence, July 2017.

9. J. Holland, Adaptation in Natural and Artificial
SystemsAnn Arbor, MI: The University of Michigan Press,
1975.

10. L. Davis (Ed.), Handbook of Genetic Algorithms, Van
Nostrand-Reinhold, New York, 1992.

11. E. Hou, N. Ansari, and H. Ren, “Genetic algorithms for
multiprocessor scheduling,” IEEE Transactions on
Parallel Distributed Systems, vol. 5, no. 2, pp. 113-130,
Oct. 1991.

12. J. Ribeiro Filbo and P. Treleaven, “Genetic algorithms
programming environments,” IEEE Computer, vol. 27, no.
6, pp. 28-43, June 1994.

13. M. Srinivas and L. Patnaik, “Genetic algorithms: A
survey,” IEEE Computer, vol. 27, no. 6, pp. 17-26, June
1994.

14. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,”
IEEE Transactions on Evolutionary Computation, vol. 6,
no. 2, pp. 182–197, Apr. 2002.

15. F. Domingo-Perez, J. Lazaro-Galilea, A. Wieser, E.
Martin-Gorostiza, D. Salido-Monzu, and A. Llana,
“Sensor placement determination for range-difference
positioning using evolutionary multi-objective
optimization,” Expert System with Applications, vol. 47,
pp. 95-105, Apr. 2015.

16. D. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley Publishing, Inc.,
Reading, MA, 1989.

17. V. Pareto, Cours d’Economie Politique, Lausanne: F.
Rouge, 1896.

18. M. Ehrgott, “Multicriteria Optimization,” Springer-Verlag
New York Inc., New York, 2005.

19. H. Benson, “An outer approximation algorithm for
generating all efficient extreme points in the outcome set
of a multiple objective linear programming problem,”
Journal of Global Optimization, vol. 13, no. 1, pp. 1–24,
July 1998.

20. A. Lohne, “Vector Optimization with Infimum and
Supremum,” ser. Vector Optimization. Berlin, Heidelberg:
Springer Berlin Heidelberg, July 2011.

21. G. Eichfelder, “Adaptive Scalarization Methods in
Multiobjective Optimization”. Springer, Apr. 2008.

22. S Iredi, D. Merkle, M Middendorf, “Bi-criterion
optimization with multi colony ant algorithms,”
Evolutionary Multi-Criterion Optimization (EMO 2001),
Lecture Notes in Computer Science, vol. 1993, Springer,
Mar. 2001.

23. C.M Fonseca and P.J. Flemming, “Genetic algorithms for
multiobjective optimization: Formulation, discussion and
generalization,” Fifth International Conference on Genetic
Algorithms, pp. 416-423, July 1993.

24. E. Zitzler, M. Laumanns, L. Thiele, “SPEA2: Improving
the strength Pareto evolutionary algorithm,” Swiss Federal
Institute Technology, Zurich, Switzerland, Mar. 2001.

25. J. Knowles and D. Corne, “The Pareto archived evolution
strategy: A new baseline algorithm for Pareto multi-
objective optimization,” 1999 Congress on Evolutionary
Computation (CEC99), pp. 6-9, July 1999.

26. K. M. Tarplee, R. Friese, A. A. Maciejewski, and H. J.
Siegel, “Efficient and scalable Pareto front generation for
energy and makespan in heterogeneous computing
systems,” in Recent Advances in Computational
Optimization (S. Fidanova, ed.), Studies in Computational
Intelligence Series, Springer, Apr. 2014

27. R. Friese, B. Khemka, A. A. Maciejewski, H. J. Siegel, G.
A. Koenig, S. Powers, M. Hilton, J. Rambharos, G.
Okonski, and S. W. Poole, “An analysis framework for
investigating the trade-offs between system performance
and energy consumption in a heterogeneous computing
environment,” 22nd IEEE Heterogeneity in Computing
Workshop (HCW 2013), pp. 19-30, May 2013.

28. R. Friese, “Efficient genetic algorithm encoding for large-
scale multi-objective resource allocation,” 9th Workshop on
Large-Scale Parallel Processing (LSPP’16), May 2016.

Figure 7: Pareto front (lower right) and individual UAV-to-target allocations for five solutions from the GA run,

ranging from least energy (lower left) to most energy (upper right)

