
 

 

Bi-Objective Study for the Assignment of  

Unmanned Aerial Vehicles to Targets 
Ryan D. Friese*, James A. Crowder§, Howard Jay Siegel⸶ɠ, and John N. Carbone¥£ 

     *Pacific NW Nat. Lab     §Colorado Engineering, Inc.  ⸶Elect. & Computer Engineering Dept.     ¥Elect. & Computer Engineering Dept. 

    Richland, WA, 99354   Colorado Springs, CO 80920            ɠComputer Science Dept.                          
£
Computer Science Dept. 

     U.S. Dept. of Energy              USA        Colorado State, University                    Southern Methodist University 
Washington DC, 20585, USA                     Ft. Collins, CO 80523, USA         Dallas, TX 75205, USA 
 
Email: Ryan.Friese@pnnl.gov, jim.crowder@coloradoengineering.com, HJ@colostate.edu, John.Carbone@forcepoint.com 

 
 

Abstract— Historically, research shows that multi-vehicle, multi-
constraint, surveillance problems require a combinatorial optimization 
solution.  In many of these surveillance missions, the overall objective 
is to provide plans for surveillance tasks for UAVs (unmanned aerial 
vehicles) visiting, or “surveilling,” targets across geographically 
distributed areas. Surveillance plans are created with the goal of 
maximizing the number of targets the fleet of UAVs can surveil in a 
given period of time (in this paper, 24 hours) under a given set of 
constraints related to total energy usage (the energy available to each 
UAV)..  Here, we present a bi-objective task planning genetic algorithm 
(GA) that provides a Pareto set of near optimal surveillance plans, given 
the above conflicting energy and surveillance objectives.  Future work 
will expand these algorithms to support multi-objective mission 
planning, including speed, distance, weather conditions, and other 
factors that would affect the overall surveillance opportunities.  
 
Keywords—bi-objective optimization, genetic algorithms, Pareto 
fronts, surveillance, UAVs 

1. INTRODUCTION  
Surveillance planning for multi-vehicle, multi-target, ad-hoc 
tasking represents a real-world situation for active battlefield 
scenarios [1].  Figure 1 below illustrates an example scenario.  
In this scenario, we have seven UAVs, flying in two patterns 
forming concentric circles around the geographic area to be 
surveilled.  Within the geographic area to be surveilled, we have 
identified targets to be surveilled by the UAVs. Each UAV may 
have different sensors on board and each target may have 
different priorities and need to be surveilled by a given sensor 
type (e.g., IR, SAR). 

 
Figure 1: Example of multi-vehicle, multi-target surveillance 

problem 
UAV/drone planning in these cases can often be an 
oversubscribed, heterogeneous scheduling problem, because 

UAV surveillance tasks arrive dynamically, and the UAV 
planner must map tasks to UAVs for mission execution.  The 
number of surveillance planning requests at any moment in time 
may exceed the available number of UAVs, making the planning 
problem oversubscribed.  It is possible that each UAV may have 
different capabilities and different physical constraints and 
characteristics, making the real-time, mission planning problem 
an oversubscribed, heterogeneous planning problem [2]. 
 
Examples of past UAV research include cooperative task 
assignment and path planning of multiple UAVs [3], three-
dimensional offline path planning using a multi-objective 
evolutionary algorithm [4], and offline/online path planning for 
UAV navigation [5]. However, here we describe a bi-objective 
genetic algorithm for a surveillance value performance measure 
and resource allocation constraints required to manage and 
successfully plan a set of regularly scheduled surveillance 
requests.  In addition, if conditions change, as situational 
awareness information is obtained, the surveillance schedule 
could be re-computed [6]. Each mission task has a weight 
(importance) that will be utilized to measure success/failure of 
the planning algorithms.  The results will illustrate the benefits 
of the algorithms and constraints for making allocation decisions 
in an oversubscribed, real-time planning environment [7].  
 
Such multi-vehicle, multi-constraint, surveillance planning 
problems are combinatorial optimization problems in which the 
overall objective is to schedule a set of optimized surveillance 
planning requests that provides a plan for UAVs visiting, or 
“surveilling” over geographically distributed targets within a 
given area.  Surveillance plans are created with the goal of maximizing 
the number of targets the fleet of UAVs can surveil in a given period of 
time (in this paper, 24 hours) under a given set of constraints related to 

total energy usage (the energy available to each UAV) [8].  Here, we 
present a bi-objective task planning genetic algorithm (GA) that 
provides a Pareto set of near optimal surveillance plans, given 
the above conflicting energy and surveillance objectives.  The 
contributions of this paper include:  
 
1. Defining a surveillance value performance measure that 

includes the targets surveilled, the number of times each 
target is surveilled, and the priority of each target; 



 

 

2. Design of a model for surveilling heterogeneous targets by 
heterogeneous UAVs; 

3. Implementation of a genetic algorithm for a bi-objective 
study of energy versus surveillance performance for a set of 
realistic system parameters; 

4. The construction of a Pareto front of near optimal mappings 
of targets to UAVs to use to study tradeoffs between those 
two objectives. 

 
The paper is organized as follows.  First, a description of the bi-
objective optimization problem is presented with tables 
describing the UAV and target characteristics in Section 2.  
Section 3 provides a detailed description of the genetic 
algorithm that was used for the bi-objective surveillance plan 
optimization through the generation of the Pareto fronts.  In 
Section 4, we present the results illustrating the creation of a 
surveillance plan for the UAVs to surveil the targets, using the 
bi-objective function with total energy usage and weighted 
number of surveilled targets as the objectives.  Section 5 
discusses related work. We conclude in Section 6  and present 
some ideas for future work. 

2. PROBLEM DESCRIPTION 

For purposes of this paper, we are limiting our optimization to 
two parameters: total energy usage and total number of surveils 
of the targets, weighted by the target’s priority.  The tables 
below show the parameters we consider in this paper.  
 
Table 1 illustrates the constraints associated with UAV fleet.  
For our example mission planning/scheduling problem, we 
assume seven UAVs.  Table 1 shows the total energy 
(normalized to a maximum of 1 for the UAV with the most 
energy) available to a given UAV for surveillance of tasks over 
a 24-hour period.  It is assumed that there is enough reserve 
energy allotted to each UAV to return to a “home” for 
refueling/recharging once the nominal energy is at 0.  Also 
shown is the energy cost/hour for operating each UAV, along 
with the sensor types available for each UAV.  
 

Table 1: UAV Characteristics 

 
 
Table 2 describes the characteristics of the targets to be 
surveilled by the UAVs.  For our example problem for this 
paper, there are nine targets shown.  Each target has a given 
surveillance priority, the surveillance time required for each 
surveil of that target, the sensor types that may be used for each 
target surveillance, and the maximum number of surveils per 
day desired for each target.  
 

Table 2: Target Characteristics 

 

Figure 2 illustrates this distance normalization.  For the UAV 
sensors, each sensor type is: 
 

 VIS: visible light spectrum sensor 
 IR: infrared spectrum sensor 
 UV: ultraviolet spectrum sensor 
 SAR: surface acoustical radar sensor 

 
As shown in Figure 2, a circle is drawn, encompassing the target 
area, designated with radius 1.  The UAVs stay in concentric 
circle flight paths around the target area waiting for tasks 
(surveillance missions).  The two flight paths are normalized and 
are determined, based on the normalization of the given 
geographic area to a radius of 1, such that any given UAV can 
surveil any given target from within its concentric flight path.   

 
Figure 2: Surveillance example with normalized distances 

 
The overall performance measures for the planning algorithms 
are: 
 

1. Minimize the overall normalized absolute energy, summed 
over all the UAVs (see Table 1) 

2. Maximize weighted total number of targets surveilled 
based on priority, i.e., for each time (up to the allowed 
maximum) a target complete is surveilled for the required 
amount of time (see Table 2) the system performance is 
incremented by that targets priority. 

 
Any operations still occurring when a period ends will get a 
proportional credit, based on the completed time for that surveil 
(see Table 2).  Table 2 describes the time a UAV must spend on 
the target to have a complete surveillance.  The planning 
algorithm can repeat a given target with the same or different 
UAV up the number of times to be surveilled (see Table 2).  
Surveils to the same target can be continuous in time or spaced 
out temporally.  For this study, we do not consider the distance 
between target and UAV, so each UAV can surveil any target 
from wherever the UAV is within its flight plan (concentric 
circles around the geographic area. 

UAV characteristic UAV #1 UAV #2 UAV #3 UAV #4 UAV #5 UAV #6 UAV #7

total energy (0-1) 1 0.8 0.9 0.7 0.8 0.6 1

energy cost/hour (0-1) 0.08 0.08 0.08 0.1 0.125 0.07 0.15

sensor type VIS & IR VIS SAR UV & IR SAR & IR VIS & IR SAR & UV

target characteristics target #1 target #2 target #3 target #4 target #5 target #6 target #7 target #8 target #9

proritiy 1 2 6 7 5 4 3 3 1

surveillance time - hrs 3 4 1 3 2 1 3 3 4

surveillance type SAR/IR/VIS SAR/UV VIS/SAR Any VIS IR/UV SAR/VIS SAR/IR/VIS VIS

surveil fequency #/day 4 3 5 2 4 5 3 3 4



 

 

3. MISSION PLANNING ALGORITHMS 

3.1 Genetic Algorithms 

Genetic algorithms (GAs) are common evolutionary 
optimization techniques useful in solving problems that contain 
large and complex search spaces [9, 10, 11, 12, 13]. GAs try to 
emulate the process of natural selection; i.e., producing better 
(fitter) solutions as time progresses. A typical GA maintains a 
population of individuals called chromosomes. Each 
chromosome is a solution to the problem being solved. 
Chromosomes are compared with one another by evaluating 
their fitness. Fitness functions are often, but not always, the 
objective function to optimized. Chromosomes are further 
composed of genes, the base component of a solution, and their 
representation is highly dependent on the problem being solved. 
Our paper implements a popular multi-objective GA, the 
NSGA-II [14] (described below). 
 
Better solutions in a GA are produced as the population evolves 
through time. Evolution occurs using three genetic operators: 
selection, crossover, and mutation. During selection, 
chromosomes are chosen as parents to “mate” and produce 
offspring chromosomes. Typically, selection operators are 
biased towards selecting more fit chromosomes. The crossover 
operation takes the chromosomes chosen during selections and 
swaps a portion of the genes of each parent into one another, 
resulting in offspring chromosomes that contain genetic 
information from both parents. Finally, mutation operates on 
chromosomes individually, with individual genes in a 
chromosome being randomly mutated to introduce new genetic 
information. Selection, crossover, and mutation are applied to 
the population until some stopping criteria is met, e.g., the 
population converges, or a given number of iterations have been 
performed. 
 
3.2 NSGA-II 
The NSGA-II is a popular bi-objective genetic algorithm 
developed in 2002 and is used for a variety of optimization 
problems [14].  The basic algorithm flow is illustrated in Figure 
3 [14]. The NSGA-II utilizes solution dominance to produce 
Pareto fronts, i.e., the set of solutions that are not dominated by 
other solutions. Figure 4 illustrates the principle of solution 
dominance.  In the figure, A dominates D because A is better in 
both objectives, any solution below and to the right of A would 
be dominated by A, while any solution above and to the left of 
A would dominate it. None of A, B, or C dominate each other 
because each one out performs the others in at least one 
objective, e.g., B consumes less energy than A and C, but A has 
a higher value than B and consumes less energy than C.   
 
3.3 Chromosome Structure 
For our use, as described in Section 2, we are trying to solve 
surveillance of multiple targets using multiple UAVs, which we 
formulate as a resource allocation (task scheduling) problem.  
Specifically, we equate the targets to tasks that need to be 
executed with the UAVs as the resources [7].  Thus, a solution 
consists of the allocation of UAVs to surveillance targets.  

 
Figure 3: The NSGA-II algorithm flow 

 

 
Figure 4: Example of dominance for four solutions: A, B, C, 
and D. Solution A dominates D because A has lower energy 
consumption as well and a higher surveillance value.  None 

of A, B, or C dominate each other because they all 
outperform one another in one objective, but not both. 

 
Given the assumptions and constraints of the problem, we have 
defined that each target has a maximum number of surveils for 
which value can be earned. Thus, at its most basic 
representation an individual gene within a chromosome 
represents a possible surveil for each target. To fully encode a 
solution, each gene contains two floating-point numbers in the 
range from 0 to 1, representing: 
 
1. A global scheduling order where the lower the number, the 

earlier the associated target will be surveilled. 
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start
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evaluate individual 
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select ranked 
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select parents
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evaluate offspring 
against objectives

offspring
population
size met?

no
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ye
s

no

output yes



 

 

2. The UAV that will be used to perform the surveillance.   
 

Figure 5 illustrates a sample chromosome, with the entries 
ranging from 0 to 1. 

 
Figure 5: Chromosome structure 

 

Floating point numbers are utilized because they allow for 
every chromosome to completely encode a valid solution 
without requiring expensive “fix” operations during the 
crossover or mutation operations.  In practice, this applies to 
each data field for different reasons.  For target surveillance 
ordering, it is highly unlikely that any two genes will contain 
precisely the same floating-point value, thus we can always find 
an exact ordering amongst the genes.  In the UAV 
representation, utilizing floating-point numbers allows us to 
shift the actual calculation of the UAV from the crossover and 
mutation operations into the fitness evaluation of each 
chromosome, allowing the crossover and mutation functions to 
be very fast. 
 
Furthermore, representing these values as double-precision 
means it will be highly unlikely that we will have two identical 
chromosomes within a given solution space, allowing us to 
maintain more genetic diversity within the populations.  
Finally, storing the values as double-precision numbers allows 
us to use more exotic mutation and crossover operations, which 
will be useful in later work as we expand the problem space and 
increase the number of objectives. 

3.4 Chromosome Fitness Evaluation 

Given the structure of our chromosomes, we have implemented 
an efficient evaluation function to construct the actual resource 
allocation and then to calculate fitness in terms of value earned 
and energy consumed.  Evaluation of a chromosome required 
adherence to several constraints: 
 

1. Each target has a maximum number of useful surveils 
(inherently handled by the structure of the chromosome 
itself).  

2. The constraint that only one UAV can surveil a target at a 
time is handled by the order value within a gene and by a 
vector (of size number of target types) that contains the 
available time for each target (Algorithm 1, line 3). 

3. A vector of UAV available times (Algorithm 1, line 1) 
represents when a new surveil can occur and prevents 
individual UAVs from surveilling multiple targets 
simultaneously.  

4. UAVs are constrained by the amount of energy they 
contain; thus, we create a vector that maintains the current 
amount of energy consumed for each UAV (Algorithm 1, 
line 2). 

The fitness evaluation algorithm is shown in Figure 6. The first 
step of the algorithm is to sort the genes, based on their order 
values, and then iterate over the genes in descending order 
(Algorithm 1, line 5).  Both the target and UAV are extracted 
from the gene (Algorithm 1, lines 6,7).  The target is determined 
based on the location of the gene in the chromosome. To 
calculate the specific UAV for a gene, we divide 1 by the 
number of possible UAVs (based on sensor constraints in Table 
1). This creates equally sized buckets from 0 to 1 that map to 
the possible UAV’s for each target. The UAV for a gene is then 
based on which bucket the floating-point UAV value falls into. 
We then set the start time for this surveil as the maximum of 
the available time for the target and available time for the UAV 
(Algorithm 1, line8).  Next, we calculate a tentative surveil 
time, which is the minimum of target.surveil_time and 24 hours 
– start time.  This will ensure we only receive credit for the 
surveil up to 24 hours, the length of our analysis (this problem 
is set up for daily surveillance schedules) (Algorithm 1, line 9).  
We then calculate the energy consumed for this surveil as: 
 

 min(surveil_time*uav.rate_of_consumption, 
        uav.max_energy− uav.consumed_energy)  
 

Given this energy value, we calculate what percentage of the 
surveil completed and multiply that by the previously 
calculated tentative surveil time (Algorithm 1, lines 12-14).  
This provides the final surveil time for this gene and ensures we 
only receive credit when there is time remaining and a UAV 
has energy available.  Finally, we update the available time 
values for the UAV and the target, and the consumed energy for 
the UAV (Algorithm 1, lines 15-17).  The global energy is 
calculated after all the genes have been iterated over (Algorithm 
1, line 19).   
 

4. RESULTS 
For our experiments, the NSGA-II was configured in the 
following manner. The population size was 100 chromosomes, 
the initial population is completely random, the probability of 
crossover is 75%, and the probability of mutation is 1%. Fitness 
evaluations were performed in parallel. We let the algorithm 
run for 1 minute before termination.  All tests were run on a 
single node consisting of two 2.8 Ghz Intel Xeon E5-2680 V2 
processors with 128 GB of RAM, where each processor has 20 
threads.  

Figure 7, below, shows the results of our experiment. The larger 
plot in the lower right side of the figure presents the Pareto front 
between our two objectives, total energy consumed and surveil 
value. This curve shows the trade-off that exists between the 
two. That is, as the UAVs consume more energy, they also earn 
more value. From the front, we see there is an inflection point 
around 2.5 units of energy, where before this point, we see large 
increases in value per unit of energy spent, after this point the 
value earned per unit of energy diminishes with increasing 
energy. This analysis can be used to inform decision makers on 
the correct policies for their environments.   



 

 

 
Figure 6: Pseudo code for energy calculation 

 

Ideally, Pareto fronts should have solutions as evenly 
distributed as possible along the entire length of the front. We 
see that below the inflection point, there are less solutions than 
above. While we plan to explore this more in future work, we 
suspect part of the reason this occurs is due to a non-uniform 
distribution of solutions in the search space [15]. That is, for the 
smaller energy solutions, there are fewer unique representations 
of non-dominated solutions than for higher energy solutions. 
This means that even though two chromosomes may have 
completely different representations in the solution space, their 
fitness evaluates to the same values in the objective space.  

The smaller plots that surround the Pareto front illustrate the 
actual UAV-to-target allocations for five solutions along the 
front. Unsurprisingly, the lower energy solutions use fewer 
UAVs and surveil less targets, resulting in less value earned. As 
we move along the front to higher energy consuming solutions, 
both the number of UAVs used and the targets surveilled 
increase, resulting in more value earned. From these plots, we 
can extract some interesting observations. For example, one can 
quickly see which targets are more profitable to surveil; given 
our environment, we see that target 9 is never surveilled 
indicating the value-to-energy spent ratio is too high given the 
energy and time constraints. We also see that targets 3 and 6 are 
the most profitable to surveil. In future work, we can use these 
observations to intelligently seed our GA with initial solutions 
to aid in the search process [16]. Furthermore, decision makers 
could use observations like these and potentially adjust the 
priority value of a given target or procure additional UAVs to 
maximize the efficiency of their overall missions. 

5. RELATED WORK 

Many interesting problems consider multiple objectives, but 
multi-objective optimization is challenging because there 
typically does not exist a single superior solution for all 
objectives. Instead, there is a set of superior solutions that are 
non-dominated and form the Pareto Front [17]. Calculating 
Pareto fronts can be computationally expensive due to solving 
numerous variations of the optimization problem. Scalarization 
techniques are often used to convert multi-objective problems 
in to a set of scalar optimization problems. Common 
scalarization approaches include the hybrid and elastic 
constraint methods [18], Benson’s Algorithm [19, 20], and 
Pascoletti-Serafini scalarization [21]. Approaches such as 
weighted sums, ε-constraint, and normal boundary intersection 
are generalized by Pascoletti-Serafini scalarzation. 
 
In addition to scalarization methods, there exist numerous 
evolutionary approaches for finding Pareto Fronts. This 
includes multi-objective ant colony optimization [22], multi-
objective GA (MOGA) [23], strength Pareto evolutionary 
algorithm (SPEA2) [24], and the Pareto archived evolution 
strategy (PAES) [25]. One benefit of evolutionary algorithms 
over traditional scalarization methods is that they directly 
provide the set of solutions the make up the Pareto front, instead 
of optimizing for a single solution at a time. In this work, we 
use the NSGA-II [14, 15] as our multi-objective algorithm (due 
to our prior experience and success in using it for multi-
objective resource allocation problems [26, 27, 28], but it would 
be feasible to use any of the above approaches to achieve the 
same analysis. 
 

6. CONCLUSIONS AND DISCUSSION 
Here we described algorithms, performance measures, and 
resource allocations required to manage and successfully plan a 
set of regularly scheduled surveillance requests. The results 
illustrated the benefits of the algorithms for making allocation 
decisions in a heterogeneous, oversubscribed, real-time planning 
environment.  
 
This paper is initial research needed to form a basis for future 
dynamic environment work, where conditions change, as 
situational awareness information is obtained, the surveillance 
schedule could be re-computed [28]. Each mission task will have 
a time-varying weight (importance) that will be utilized to 
measure success/failure of the planning algorithms [3].   
 
The preliminary results are encouraging and can form a basis for 
more research and analysis.  For future papers, we intent to open 
the problem to more constraints to include distance from target 
and weather conditions that affect the value of a given surveil.   
 
 
 
 
 
 

Algorithm 1 Fitness Evaluation

Input: chromosome C , numUavs , numTargets

Output: value, total_energy

1: uav_times [numUavs ] = 0

2: uav_energy [numUavs ] = 0

3: target_times [numTargets ] = 0

4: value  = 0

5. for gene   sorted (C.genes ) do
6:       u  = gene.uav

7:       t  = target_uav

8.      start_t  = max(target_times [t ],uav_times [u ])

9:      survey_t  = min(t.survey_time , 24-start_time )

10:    exp_energy  = min(u.energy_rate *survey_t )

11:    energy  = min(exp_energy , u.max.energy  - uav.energy [u ])

12:    survey_t  = survey_t *(energy /exp_energy )

13:    percent_t = (survey_t /t.survey_time )

14:    value+  = u.value *t.priority *percent_t

15:    target_times [t ] = start_t +survey_t

16:    uav_times [u ] = start_t +survey_t

17:    uav_energy [u]+ = energy

18: end for
19: total_energy  = S(uav_energy )
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Figure 7: Pareto front (lower right) and individual UAV-to-target allocations for five solutions from the GA run, 

ranging from least energy (lower left) to most energy (upper right) 


