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Abstract— Situational/threat assessment strategies 
have been studied for generations.  Typically, these 
threat assessments utilize Bayesian belief networks 
and inference engines, based on decision tree 
technologies, to determine the likelihood of different 
deployment strategies and prevention methods 
(psyops).  These are typically represented as a 
directed “acyclic” graph and utilize joint probability 
distributions, which are typically based on 
incomplete information as to the probabilities 
involved in various aspects of the current mission 
parameters.  Bayesian believe network solutions are 
good at showing qualitative relationships between 
entities and have a compact and theoretically sound 
foundation.  Problems arise when general questions 
or queries are required which cannot be specifically 
addressed by the Bayesian probabilities.  Also, 
Bayesian methods tend to be computationally 
intensive.  Here we look at fuzzy possibilistic 
methods that are more robust and less 
computationally intensive than standard Bayesian 
methods. 
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1. INTRODUCTION  
Part of the overall survivability analysis for 
battlefield planning and management includes 
looking at indicators that influence the emotions, 
motives, and objective reasoning of enemy forces.  
They purpose of this analysis is to understand how 
the behavior of organizations, groups and/or 
individuals might be influenced to accomplish 
mission objectives without the use of troops or 
military force.  These possible psychological 
operations, called PSYOPS are employed when it is 
deemed they can induce or reinforce behavior 
favorable to U.S. objectives.  They can become an 
important part of an overall battlefield strategy.   
 
Here we present a fuzzy possibilistic network and 
inference engine, which provides robust situational 
assessments and general “what if” scenarios in the 

presence of inexact data measurements and 
information [3].  Our fuzzy possibilistic methods 
utilize conditional possibilistic technologies based 
on Renyi’s generalized information theory, utilizing 
the concept of mutual information and joint 
informational memberships, rather than joint 
probabilities.  These methods are excellent at 
illustrating qualitative relationships as well as 
possible relationship not attainable with Bayesian 
methods.  These 1st and 2nd order possibilistic causal 
relationship structures allow confidence bounds to be 
consider within their conditional possibilistics and 
creates decisions with conditional possibility 
attributes [11].  They are more useful with general 
questions about a subject domain and are generally 
less computationally intense than Bayesian methods. 

2. CONDITIONAL POSSIBILISTICS 

Figure 1 illustrates the conditional possibilistics we 
developed, and they will be utilized within the 
decision processes for the example problem 
described below.  In Figure 1, the arcs/lines represent 
causal relationships between states and the net 
represents joint possibilistics.  There are two types of 
nodes [4]:  
 

1. State: situational possiblistic models 
2. Evidence: observations to be explained.   

 

 
Figure 1. Conditional Possibilistics for PSYOPS 

Countermeasures 
 
where:  

 Pos(B/A) represents the possibility of B, 
given A was observed. 
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 Pos2(B/A) represents the possibility of B 
given the possibility of A, with a confidence 
bound for A. 

 L(evid/A) represents “what is the logical 
causality of the evidence/observation given A 
happened? 

 

3. FUZZY INFORMATION FUSION AND RENYI’S 

ENTROPY MEASURE 

Figure 2 represents a processing flow for information 
analysis/processing.  The process involves two main 
layers, the deductive process and the investigative 
process.  The deductive process goes after assembling 
information that has been previously known while the 
inductive process (data mining) looks for patterns and 
associations that have not been seen before.  The 
model illustrated in Figure 2 is the deductive process 
used to detect previously known patterns in many 
sources of data by searching for specific information 
signatures and templates in data streams to 
understand the state of the intelligence knowledge 
[13]. As the systems continues to evolve in 
complexity, the number of objects, situations, threats, 
sensors and data streams dramatically increase, 
presenting a very complex challenge for advanced 
fusion system designers.  In order to keep the system 
“on-top” of its data environment is to have data 
mining operations going on in the background at all 
times, finding new associations and evolving the 
templates and information correlations [6]. 
 

 
Figure 2. Data/Information Flow for Data Mining 

In both data mining and data fusion, feature selection 
or feature transforms are important aspects of any 
system.  Optimal feature selection coupled with 
pattern recognition leads to a combinatorial problem 
since all combinations of available features must be 
evaluated before deciding how to fuse the 
information available.  Another such criterion is the 
joint Mutual Information between the features and 
the class labels [13].  It can be shown that Mutual 
Information minimizes the lower bound of the 
classification error.  However, according to 
Shannon’s definition this is computationally 
expensive.  Evaluation of the joint Mutual 
Information of a number of variables is plausible 
through histograms, but only for a few variables.  If 
we look toward a different definition of Mutual 
Information we find a different result.  Using Renyi’s 
entropy instead of Shannon’s, combined with Parzen 
density estimation, leads to expression of Mutual 
Information with significant computational savings.  
As a part of this study, we extended Renyi’s method 
for Mutual Information to multiple continuous 
variables and discrete class labels to learn linear 
dimension-reducing linear feature transforms for data 
fusion and parameter estimation utilizing competing 
parameter measures [5]. 
 
We applied Renyi’s entropy-based Mutual 
Information measure to create fuzzy membership 
functions that can be used to rapidly asses the Mutual 
Information content between multiple measurements 
of a given parameter from different sensors [1].  We 
introduce the Mutual Information measure based on 
Renyi’s entropy, and describe its application to Fuzzy 
Membership Functions that were used transform 
multiple parameter measures and error estimates into 
a single parameter and error bound estimate for the 
parameter.   
 

3.1 Mutual Information 

We apply Renyi’s entropy definitions instead of the 
standard Shannon definition because of its 
computational advantages.  For a continuous variable Y, 
Renyi’s quadratic entropy is defined as: 
 

    dyypYH
y

R 
2

log  
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It turns out that Renyi’s measure, combined with the 
Parzen density estimation method using Gaussian 
kernels, provides significant computational savings, 
because a convolution of two Gaussians is still a 
Gaussian.  If the density  yp  is estimated as a sum of 

symmetric Gaussians, each centered at a sample iy  as: 
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then it follows that the integral above equals: 
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Thus, Renyi’s quadratic entropy can be computed as a 
sum of local interactions as defined by the kernel, over 
all pairs of samples.   
 

3.2 Maximizing Mutual Information 

To make use of this convenient property, we make use 
of fuzzy membership functions and the natural way they 
demonstrate local interactions to find a function which 
maximized Mutual Information among sensor 
measurements [7].  For each factor in the 
PSYOPS/battlefield scenario, a fuzzy membership 
normalization factor is formed and then each 
measurement is mapped onto each membership 
normalization function: 
 
  
 
 
 
Once all the curves have been populated, we compute 
the mean fuzzy membership value for each function: 
 
 
 
 

The normalization function with the highest mean 
membership represents the normalization mapping with 
the highest Mutual Information and is therefore given 
the highest weighting in determining the measurement 
value to report.  The weighting factors are then 
determined for rolling up the measurements and error 
bounds into a single parametric estimation [8]: 
 
 
 
 
where the Wis are the weighting factors.  Figure 3 
illustrates the process. 
 

 
 

Figure 3. Weighted Fuzzy Parametric Estimation 
Process 

4. SAMPLE SCENARIO 

Figure 4 (at the end of the paper) illustrates the 
sample possibilistic situational/threat assessment 
scenario that was created for this paper.  It includes 
a variety of information sources from submarines to 
UAVs and many others.  Much 
evidence/observations are available to make 
decisions about how to proceed, given the mission 
objectives.  Some of these questions might include: 
 

 What decisions are possible, based on the 
evidence/observations: 

 What are the confidence bounds on the 
decisions, given the evidence/observations? 

 What changes in conditions/observations 
and/or confidence bounds on the conditions/ 
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observations might lead to different 
decisions? 

 
Based on the answers to these questions, a situational 
assessment would be made to answer threat 
questions like: 
 

 What threats are in what locations, with what 
confidence bounds? 

 What units are in what locations? 
 What type of attacks/missions are possible? 
 When can it be predicted that significant 

events will occur, with what confidence 
bounds? 

 What are the possible avenues of approach? 
 
Figure 5 (at the end of the paper) illustrates a possible 
possibilistic situational assessment, based on the 
conditional possibilistics illustrated in Figure 1.  
Many factors, including things like weather and 
terrain constraints, are accounted for in the initial 
assessment.  Possible troop movements are 
indicated. 

 

4.1 Possibilistic Assessment Results 

Based on the conditional possibilistic assessment 
shown in Figure 5, the results would be: 
 

 Decision 1: where to send troops? 
o Send troops to area 1 
o Send troops to area 2 

 Decision 2: which route should troops take? 
o Send troops by northern route 
o Send troops by central route 
o Send troops by southern route 

 
All combinations are possible, given all the 
evidence/observations that were available from the 
various information sources.  The highest possibility 
for success indicates to send troops to area 2 via the 
northern route.  This combination constitutes the 
highest mutual information calculation.  The highest 
possibility of success is from the norther route.  
However, there is also a high possibility of creating 
an effective deception plan using this route also.  
Much of this is based on the confidence of weather 
reports and the confidence on our assessment of the 

enemy’s intelligence on our troops and possible troop 
movements.  Also, subtle changes in confidence 
levels or evidence could change the route or the area, 
or both.  Investigating PSYOPS possibilities provides 
highest possibility of survivability.  Questions to be 
answered are: 
 

 Are there PSYOPS activities that can prevent 
the necessity for a “hard kill?” 

 If so, what type of PSYOPS? 
o Political 
o Propaganda 
o Cultural 
o Other 

 
 

4.2 Possibilistic Assessment Results with PSYOPS 

Figure 6 (at the end of the paper) illustrates the 
information shown in Figure 5, plus the addition of a 
PSYOPS evaluation.  The conditional possibilistic 
assessment results with PSYOPS provides the 
following decisions: 
 

 Decision 1: where to send troops? 
o Send troops to area 1 
o Send troops to area 2 

 Decision 2: which route should troops take? 
o Send troops by northern route 
o Send troops by central route 
o Send troops by southern route 

 Decision 3: use PSYOPS plan rather than 
sending in troops. 

 
Again, all combinations are possible given all the 
evidence/observations available.  The highest 
conditional possibility for success and survivability 
indicates to use PSYOPS rather than a hard kill 
scenario [12].  The highest conditional possibilistic 
survivability assessment indicates to use a cultural 
PSYOPS approach.  Much of this is based on the 
confidence of our intelligence on their culture and 
their state of political pressure/influence, propaganda 
influence, etc.  Again, subtle changes in confidence 
levels or evidence could change the decision from 
PSYOPS to hard kill.  The advantage of the fuzzy 
possibilistic measures is there simplicity of 
computation, allowing real-time, ad-hoc changes and 
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“what if” scenarios to be explored in the field and 
rapid decisions implemented based on current 
information/observations. 
 

5. CONCLUSIONS AND DISCUSSION 
Data/information fusion is critical to real-time, 
effective situational/threat assessments [10].  The use 
of possibilistic logic provides a more efficient and, 
we believe, better assessment of overall 
scenario/hypothesis testing.  The conditional fuzzy 
possibilistic approach can be a valuable tool in 
survivability assessment.  One assumption threaded 
into the computations is that the system allows fluid 
communications between the heterogeneous 
information sources [2].  If this is not possible, data 
fusion can be brittle and can fail.  The flow from a 
system-level to decision level design is essential for 
effective fusion systems for tomorrow’s intelligence 
processing and decision support systems [9].  
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Figure 4.  Sample Mission/Battlefield Situation Scenario 
 

 

 
 

Figure 5.  Conditional Possibilistic Assessment Example based on Figure 4 Scenario 
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Figure 6.  Conditional Possibilistic Assessment Including PSYOPS Strategies 
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