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Abstract— To reduce mission manning and increase 
adaptability and evolvability for managing current operations 
of Unmanned Aerial Vehicle (UAV), Miniature Air-Launched 
Decoy (MALD) and future systems, an Autonomous Mission 
Planner and Supervisor (AMPS), based upon an Intelligent 
Information Agent (I2A) architecture for real-time, adaptive, 
decision making is proposed. AMPS will use a naturalistic 
decision-making approach to comparing sensor inputs to a 
priori situational “scripts” and previously collected data to 
improve determination/decision and execution time of 
appropriate actions thereby, enhancing quality and minimizing 
time to achieve each related mission goal. The proposed AMPS 
herein will describe mechanisms for employing continuous 
monitoring capabilities and continuously learning from 
multiple Unmanned Aerial Vehicles (UAVs) while 
coordinating activities when necessary to more rapidly and 
more effectively achieve mission objectives.  
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1. INTRODUCTION: AUTOMATED MISSION 

PLANNING 
There is an increasing need within the DoD for unmanned 
systems [2].  This need will only increase in the future, 
and, as staffing requirements are reduced, as well as the 
insatiable desire to minimize harm while maximizing 
effect, the need for autonomous or semi-autonomous 
vehicles will become critical. Current manual control of 
unmanned vehicles is manpower intensive, and as the 
number of manually controlled vehicles is increased, 
operators are quickly becoming overwhelmed. Even 
simplistic tasks become significant as the number of 
vehicles exceeds 4, with predicted number of vehicles 
rapidly expanding, optimal usage becomes virtually 
impossible when corresponding to [3]: 

vehicles =
NT + IT

IT
= 1 +

NT

IT
, NT + IT = 1 

Where: 

NT = Neglect Time (% of time unmanned vehicle can 
be ignored before its performance drops to an 
unacceptable level. 

IT = Interaction Time (% of time it takes an operator to 
interact with the unmanned vehicle to raise its 
performance to an acceptable level. 

For human control of 4 unmanned vehicles, this means 
that each unmanned vehicle is left unattended 75% of the 
time. This means even simple health and status checks, 
along with vehicle control within varying environments is 
a difficult challenge.  When added to already complex 
mission directives and varying needs for possible 
defensive actions, there exists a critical need for 
unmanned vehicles to reliably handle much, if not all of 
the control, status, and maintenance functions while they 
are in-field.  Furthermore, Principles of Active 
Conditional Control (PACC) [19] describe that processes 
and complexity of control systems, as well as, numerous 
variations in aircraft designs, do not leave a room for 
maneuver: humans become a weakest link and should not 
be considered as an element of active conditional control 
approach. PACC automated monitoring of reliability in 
real time aircraft applications can offer 20-25% growth of 
mission reliability. In addition, the ability of unmanned 
vehicles to collaborate and cooperate on a given mission 
follows Network Centric Warfare [20] paradigms and 
increases the efficiency and adaptability of their ability to 
complete a given mission as a function of their shared 
awareness.   
 
Many factors make the autonomous, or even semi-
autonomous, control of unmanned vehicles difficult.  
First, unmanned vehicles, whether ground, air, or 
underwater, must operate in unstructured environments 
that are inherently unpredictable and dynamical.  Second, 
the vehicle must have some degree of autonomous 
intelligence to undertake tasks without direct human 
involvement, especially in unstructured environments.  
This paper will discuss the use of an Intelligent 
Information Agent (I2A) framework to provide 
Unmanned Service Systems (USS) and Unmanned 
Undersea Systems (UUS) with a set of cognitive like 
capabilities required for semi-supervised and effective 
autonomous command and control [1]. 



One of the reasons enabling machines with “human 
reasoning” is so difficult is that human learning is very 
dynamic in nature and hence, somewhat fuzzy and 
random.  There is no way to know when information is 
going to chaotically come our way, nor is it known how 
the information might apply to one of more simple or 
complex subjects, or topics in our memory pedigree [4].  
Therefore, Cognitive systems like the I2A architecture, 
rooted in solutions conceptualized within Fuzzy Logic 
[4], create an environment for autonomous operations by 
providing a processing architecture, cognitive processes, 
and algorithms that facilitate human-like reasoning within 
the cognitive system [5]; i.e., the I2A framework’s 
cognitive framework models human reasoning structure 
and provides human-like abductive reasoning 
methodologies. Abductive reasoning is formally defined 
as finding the best explanation for a set of observations or 
inferring cause from effect.   
 
The I2A framework, uses a form of abduction called 
“Occam Abduction” which is defined as the simplest set 
of consistent assumptions and hypotheses, which, 
combined with available stored pedigree knowledge, 
entails adequate description/explanation for a given set of 
observations which has reached a previously learned 
threshold within the thought processes of the I2A 
framework cognitive framework.  Figure 1 below 
illustrates the difference between deductive, induction, 
experimental, and abductive reasoning.  Abduction 
consists of computing explanations (hypotheses) from 
observations.  It is a form of non-monotonic reasoning 
and provides explanations that are consistent with a 
current state of knowledge and can become consistent or 
inconsistent, as new information is gathered [6]. 
 

 
Figure 1 – Differences Between Reasoning Systems 

Human neuroscience research shows that generating new 
knowledge is accomplished via natural means: mental 
insights, scientific inquiry process, sensing, actions, and 
experiences, as well determining the context of this newly 
acquired knowledge, which characterizes the knowledge 
and gives it meaning [6].  Truly autonomous systems 
must contain these same processes and abilities.  True 
learning can be a lengthy iterative process of knowledge 
discovery, experience, and refinement as new information 
is attained.  This recursive refinement of knowledge and 
context occurs as an autonomous vehicles cognitive 
system interacts, over period, with their environment; 
where the granularity of information content results is 
analyzed, followed by the formation of relationships and 
related dependencies. 
 
Occam Simplicity Through Orthogonality  
Discovering optimized Occam like simplicity within any 
design has been vigorously researched within mechanical 
engineering complexity theory and axiomatic design [21]. 
Two core axioms: Independence Axiom and Information 
Axiom, when applied to I2A Framework, provide 
solutions for optimizing Occam simplicity and 
orthogonality.  The objective of the Independence Axiom 
is to initially drive any information context into their core 
precepts/concepts minimizing overlap and maximizing 
understanding. Secondly, the Information Axiom’s 
objective is to focus upon minimizing information content 
within any given context, thereby, removing frivolous, 
non-core topic-applicable content. The Human Brain’s 
prefrontal cortex performs these operations naturally. 
When embedding Occam Abduction based axioms into 
I2A Framework we applied them to cognitive functional 
requirements and therefore support driving to optimal I2A 
Framework design.  
   
Ultimately, knowledge is attained from assimilating the 
information content until it reaches a threshold of 
decreased ambiguity and level of understanding, and is 
then categorized by the brain as knowledge, which acts as 
a catalyst for decision-making, subsequently followed by 
actionable activity or the realization that a given objective 
or inference has been attained [7].  Any functioning and 
evolving, autonomous, artificially intelligent system must 
have a cognitive system to perform similar activities.  
Here we present an overview of the Autonomous Mission 
Planner and Supervisor (AMPS) required to provide 
autonomous/semi-autonomous vehicle control.   

 
To reduce manning and increase adaptability and 
evolvability for current unmanned systems an 
Autonomous Mission Planner and Supervisor (AMPS) 



based on an Intelligent Information Agent (I2A) 
architecture for real-time, adaptive, decision making is 
proposed [8]. The AMPS will use a naturalistic decision-
making approach to comparing sensor inputs to a priori 
situational “scripts” and previously collected data to 
determine and execute appropriate actions per the current 
mission goals. AMPS performs continuous monitoring 
and continuously learning from multiple Unmanned 
Aerial Vehicles (UAVs) and coordinates their activities, 
as appropriate. 
  
2. AMPS BASIC ARCHITECTURE 
The Automated Mission Planner and Supervisor (AMPS) 
will control and monitor multiple Unmanned Aerial 
Vehicles (UAVs) thus reducing the manpower, while 
providing improved adaptability required to operate these 
systems. The functionality of the AMPS is focused in 
three main areas:  
 

1. The control and monitoring of UAVs based on 
the current mission goals and the information 
stored about previous missions (memories).  
Here, the overall mission objectives are 
monitored and rated, based on lessons-learned 
from previous missions and how to apply them to 
the current mission objectives. 

2. The ability to learn and modify its behavior based 
on data obtained during the execution of a 
mission and by monitoring operator actions. This 
includes participating in post-mission briefings 
during which the operator can explain the actions 
they took and the AMPS indicating possible areas 
of operational improvement 

3. Performing prognostic health management for 
the UAVs it monitors to improve maintenance 
efficiency and reduce downtime. 

 
The AMPS is based on a multiple Intelligent Information 
Agent (I2A) architecture originally developed under the 
Colorado Engineering, Inc. (CEI) AFRL program: 
Learning Agents for Autonomous Space Asset 
Management (LAASAM). This architecture processes 
inputs (UAV sensor data, operator actions, mission goals) 
and uses the processed inputs to retrieve the appropriate 
situational “script” to control the actions of the UAVs 
under its control. The system also uses the inputs to 
improve and adapt the scripts. The AMPS also maintain, 
updates, and predicts the state of the UAVs to determine 
when maintenance should be performed to prevent UAV 
failure and reduce downtime.  
 

The AMPS will itself be supervised by a human operator 
who will monitor and/or approve certain actions 
(modifying a mission goal based on inputs and situational 
awareness, authorizing a UAV to launch a missile, etc.). 
As the AMPS is capable of supervising multiple UAVs 
the number of operators required per UAV or UAV 
constellation will be reduced. The role of the operator will 
be more of a supervising decision maker with the AMPS 
handling the more mundane/repetitive tasks associated 
with UAV operation. By relieving the operator of these 
tasks, the physical and mental workload is reduced, and 
the human can focus on assuring that the mission is 
accomplished [9]. 
 
Features of the solution are described below: 
 
Memory and Learning. The AMPS will store and 
retrieve and continuously learn from information based 
on previously executed missions. At first this information 
can be loaded into the system to provide initial 
“memories” for use. As more missions are performed the 
AMPS will add information that will modify these scripts. 
Scripts that lead to the satisfaction of mission goals will 
be reinforced while those that interfere with mission 
success will have their weighting reduced.  
 
Reinforcement learning is accomplished via a 
combination of biologically inspired components known 
as Knowledge Relativity Threads [22,23] which provide 
continuous context learning constructs within memories 
and concepts of Noology [24] which supports rapid 
effective causal learning capability development over 
time. 
  
This approach alleviates the problem of realizing a 
time-varying mapping of neural structures, 
commonly referred to as the sequential learning 
problem. Neural-based systems tend to forget 
previously learned neural mappings quickly when 
exposed to new types of data environments, a 
phenomenon known as “Catastrophic Interference” 
(CI). The neural elements of the AMPS will use the 
scripts to retain learned data and eliminate 
Catastrophic Interference [10].  
 
Flexibility. The AMPS will provide flexibility in several 
different dimensions. The first dimension is the ability to 
interact with and control a variable number of UAVs. This 
capability is predicated by the reality that different 
missions will start or end at different times. The second 
dimension is the ability to apply one or more sets of 



mission goals to the UAVs being controlled by AMPS. 
The third dimension is the capability to incorporate and 
apply new configurations, such as changes to mission 
goals, and informational awareness scenarios and 
information to support decision making in real-time 
situations. 
 
Robustness. The information and control are distributed 
with the AMPS architecture; thus, the system can degrade 
gracefully, even when some of the elements are out of 
service temporarily. This provides the advantage of 
having the AMPS continue the mission in a degraded 
fashion or to devote the reduced resources to a subset of 
the UAVs it is controlling while having the human 
monitor assume control of one of the vehicles to continue 
its mission or to return it to base. This will reduce the load 
on the AMPS until the problem is resolved and the system 
is returned to full functionality. 
 
Prognostics. The AMPS will have a health management 
system to maintain its own performance and that of the 
UAVs it controls. The AMPS prognostic health 
management [12] capability is based on the ability to:  
 

1. Accurately predict the onset of impending 
faults/failures or remaining useful life of critical 
components 

2. Quickly and efficiently isolate the root cause of 
failures once failure effects have been observed. 
In this sense, if fault/failure predictions can be 
made, the allocation of replacement parts or 
refurbishment actions can be scheduled in an 
optimal fashion to reduce the overall operational 
and maintenance logistic footprints.  

Figure 2.  The I2A AMPS Cognitive Architecture 

 

From the fault isolation perspective, maximizing system 
availability and minimizing downtime through more 
efficient troubleshooting efforts is the primary objective. 
 
AMPS will be incrementally developed to create a system 

that will autonomously manage the overall monitoring, 

fusion, and analysis of incoming data/information [13] for 

UAVs. Development and verification of the Intelligent 

Information Agents (I2As) and information management 

techniques will be the first area of focus. The architecture 

will support fusion of disparate, dissimilar, incomplete, 

and noisy data, obtained from multiple information 

sources and types. The second development step will be 

to develop and test the algorithms that will establish 

information collection criteria, plans, and tasks, and then 

execute and monitor progress to ensure mission goals are 

satisfied.  The information collection and analysis process 

are tuned based on feedback from sensors and human 

operators to satisfy processing and decision-making 

needs. 

Designs for the various I2As and information 
management algorithms will be created to experiment and 
demonstrate the researched methodologies and 
techniques.  These will be combined to produce a design, 
system requirement and software requirement 
specifications, and a report describing the effectiveness of 
the information agents to automate the AMPS activities.  
Any autonomous information processing and situational 
awareness agent-based system must consider overall real-
time performance issues.  It should have the capability to 
overcome inherent bottlenecks that result from massive 
volumes of data being generated by the collection sensors 
or processors transforming the data into information and 
knowledge.  A collection management system must can 
stay on top of the sensors and intelligence inputs that drive 
collection [14]. Figure 2 illustrates the I2A basic 
architecture  
 
Simulated human decision making has applications 
across a broad spectrum of human commercial activities 
and man and machine interfaces.  A system in which the 
machine can make sound decisions more effectively than 
a representative sample of human practitioners can reduce 
manpower costs, increase decision timeliness and in some 
applications, reduce risk to humans.  Building upon the 
technologies, architectures, and prototypes developed 
under this fundamental research effort, CEI is researching 
and developing an overall prototype system that combines 
all elements of this research into the Autonomous Mission 



Planning and Supervisor (AMPS).  Potential applications 
and markets include activities where the human operator 
is removed or isolated from the environment that the 
machines or sensors are operating in:  constrained by the 
lack of timely communications and sensory inputs.   We 
intend to apply the technology as broadly as possible once 
a reliable approach is proven. 
 
3. HUMAN-SYSTEM COLLABORATION 
The purpose of autonomous unmanned systems is 
presumably to provide some type of services on behalf of 
humans. Hence, to help define optimal human-AMPS 
interactions, we must look to the characteristics of human 
interactive behavior. Human collaboration, with other 
humans, fundamentally comprises trust and knowledge of 
another’s abilities and limitations.  In short, it’s not 
possible to have an interaction between two human 
entities without there being some level of expectation of 
the interaction [14].  Let’s consider a simpler example of 
human interaction with animals. Humans, for example, 
cannot completely predict an animal’s behavior.  
However, it is still important to know how the animal will 
typically behave in order to predict and plan for the proper 
interactive response (e.g. give food, play, run to safety).  
Again, it comes down to human expectations.  
Understanding the animal’s abilities and limitations will 
reduce frustrations of trying to meet a goal. (e.g. taming a 
lion) Knowing the abilities of the animal changes our 
expectations.  Bulldogs can’t swim because of the shape 
of their nose, similar for dogs with large chest.  Humans 
can accommodate for these limitations when they know 
about them.  Understanding the expectations, abilities, 
and limitations of a UAS/UAV as well as the cognitively 
designed understanding of UAS/UAV expectations, 
abilities, and limitations of humans, is vital to efficient, 
and useful collaboration.  Collaboration is much more 
than a mere working relationship. It is both a process and 
an outcome.  The process is a coming together to work on 
a common problem while understanding that each other 
has influence on the other.  The collaborative outcome is 
a solution where all parties can agree on the final solution 
[15].  Typically, collaboration happens because an 
individual cannot accomplish the same goal alone.  It is 
more than an association relationship it is more like a 
partnership. 
 
Current human-autonomous system interaction 
technology and design has developed from master-slave 
type interactions toward more collaborative.  Karami, 
Jeanpierre, and Mouaddib [16], described a model where 
the autonomous system can consider human intentions 
and operate without communication.  Karami, et al., also 

discussed how autonomous systems can build beliefs 
about human intentions by observing, collecting, and 
perceiving human behavior.  Although the experiment 
shown was a seemingly simple task of moving objects, 
the results showed further promise for human-UAS/UAV 
collaboration much more advanced than in the previous 
master-slave paradigm. 
 
Many existing Unmanned Vehicles, intelligence 
information processing systems, cyber monitoring and 
security systems, all continue to have the “human-in-the-
loop” making ultimate decisions but are making strides 
toward autonomous operations every day.  However, 
these systems are all developed with the goal of thinking 
all the possible causalities processed by the infamous IF, 
THEN statements that the best software engineers can 
devise to prepare each of these systems for what it might 
someday encounter.  Therefore, to evolve beyond this 
paradigm, we propose a cognitive system (i.e., the I2A 
framework) comprising the following capabilities in 
order to allow even limited autonomy and collaboration 
between unmanned vehicles: 
 
Cue Familiarity: cue familiarity is the ability of the 
system to evaluate its ability to answer a question before 
trying to answer it [17].  In cue familiarity, the question 
(cue) and not the actual memory (target) become crucial 
for making cognitive judgments.  This implies that 
judgments regarding cognitive processing and decisions 
would be based on the system’s level of familiarity with 
the information provided in the cue.  This executive-level, 
top-down cognitive judgment requires abilities that allow 
a UAS to judge whether the answer to a question is 
known, or whether the system is already familiar with the 
topic or mission, allowing the system to judge unfamiliar 
terms or conditions.   
 
Cognitive Accessibility: suggests that a system’s 
memory will be more accurate and more rapidly available 
for use when the ease of cognitive processing 
(accessibility) is correlated with memories.  For our 
UAS/UAV, we propose that the quality of information 
retrieval depends on the system’s density of knowledge 
on the topic or subject or individual elements of 
informational content about a topic. Individual elements 
of topical information can differ in strength while the 
speed of access is tied to both density of knowledge and 
level of memory when a system responds to the 
information cues. 
 
Cognitive Competition: comprises three principles: 



 The UAS/UAV cognitive processing system (its 
brain) is activated by a variety of inputs (sensors), 
perceiving a variety of sensory inputs.  Hence, 
different types of information are sensed 
simultaneously.   

 Competition develops over time as simultaneous data 
is processed within the multiple cognitive processing 
subsystems and is adjudicated by the I2As.   

 Competition is assessed utilizing top-down neural 
priming.1 

 
Cognitive Interaction: Combines cue familiarity and 
cognitive accessibility.  In cognitive interaction, once cue 
familiarity fails to provide enough information to make 
cognitive inferences, cognitive accessibility accesses 
extended memories and may employ stored memory cues 
to access additional information to attempt to make the 
required cognitive inferences.  This may result in slower 
response time that with cue familiarity alone.  Even in 
humans, reaction times can be slower when the situation 
requires additional learning [18]. 
 

4. CONCLUSIONS AND DISCUSSION 
Having the AI system assist in the planning and 
supervision of UAV/UAS systems will become an ever-
increasing need as the proliferation of UAS/UAV fleets 
increases over the next decade.  To “learn” that basics of 
system management, we feel it will be necessary for 
human-AI interaction in the form of Human Mentored 
Software (HMS), where the human helps “teach” the I2A 
system how to do its job.  This system, called the 
Cognitive, Interactive Training Environment (CITE) 
facilitates HMS is shown in Figure 3 and will allow the 
system to learn from humans, including the heuristics 
required for ad-hoc mission planning and supervising. 
 

 
Figure 3 – the CITE High-Level Architecture 

                                                           
1Priming is an implicit memory effect in which exposure to a 
stimulus influences a response to a later stimulus. It can occur 
following perceptual, semantic, or conceptual stimulus repetition.  

Here we have presented a high-level view of the AMPS 
system.  The next step is to instantiate the I2A system and 
use it in a test scenario with a model of a UAV fleet. 
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